Huygens Principle:
start with light wave font on a plane wave

can decompose wavefront info "wavelets"

Then let each wave let send ont waves with the same wave length. in all directions

now add wavelets how all sources

the ones going backwards are cancelled ont by wavelet be kind the leading set

This can be used to explain z-slit interference where width of slit $a \ll \lambda$

this reproduces 2-slit interference pattern!
what if slit width an λ ?
Then apply Huygen's principle to all the wavelets hat fit inside slit
This is called diffraction $(a>\lambda)$
Fraunhofer diffraction:
when slit and seen are separated by $R>a$

want to calculate the diffraction (infer [erence) minima and maxima at point P

Diffraction minima
This is where interference is destructive

Start wi wavelets: at top of slit and in center for $R \gg a$, both rays make angle θ wot dashed line
\Rightarrow this is the same as 2-olit inderference, with $d=a / 2: \Delta r=d \sin \theta=\frac{a}{2} \sin \theta$
for lot minima, want $\Delta r=\frac{1}{2} \lambda$

$$
\text { so } \frac{a}{2} \sin \theta=\frac{\lambda}{2} \Rightarrow a \sin \theta=\lambda
$$

\Rightarrow now add another pair if wave lets right below
for $R \gg a$, same condition: $a \sin \theta=\lambda$ If minima keep adding pairs: will all contribute same so final condition for 1 st minima:

1. st: $a \sin \theta= \pm \lambda$
$N \pm$ because can have a minima below dashed line
call this path di $\left[\right.$ terence Δr_{1} (center of slit to pt) 2 nd mining will occur when $\Delta r_{2}=\Delta r_{1}+\lambda$

$$
2 \pm 1: \quad a \sin \theta= \pm 2 \lambda
$$

and etc. for $n^{\text {th }}$ minima

$$
a \sin \theta= \pm n \lambda
$$

position y on screen given by

$$
\tan \theta=y / R
$$

but for $R \gg y_{1} \tan \theta=\sin \theta=\frac{2 x \lambda}{a}$

$$
\begin{gathered}
\text { so } \frac{y}{R}=\frac{n \lambda}{a} \quad(y \text { can be }+r-) \\
y=n \frac{\lambda R}{a} \quad \text { minima }
\end{gathered}
$$

What about $n=0$? that would mean $\Delta r=0$ so we would get a bight interference maxima there
interference bands:

$$
\text { slit } \left.\begin{array}{ll}
& n=2 \\
\rightarrow & n=1 \\
\rightarrow & n=-1 \\
\rightarrow & n=-2
\end{array}\right\}
$$

ex: light wave lengths $-300-500 \mathrm{~km}$ let $\cdot \lambda=400 \mathrm{~nm}$

- $a=1 \mathrm{~mm}$
- $R=1 \mathrm{~m}$
how many di/haction minima are there up to $\pm 1 \mathrm{~cm}$ on screen?

so 25 minima alone, 25 below
what's the width of central max on screen?
1些
min is at $y=\frac{1 \cdot \lambda R}{a}=\frac{400 \mathrm{~nm} \cdot 1 \mathrm{~mm}}{1 \mathrm{~mm}}$

$$
\begin{aligned}
&=\frac{0.4 \times 10^{-6} \cdot 1}{10^{-3}}=0.4 \times 10^{-3}=0.4 \mathrm{~mm} \\
& 0.9 \mathrm{~mm} \\
& \leftarrow \min \\
& \leftarrow \min
\end{aligned}
$$

So central max has a width of $2 * 0.4=0.8 \mathrm{~mm}$
ex: light of wave length 570 nm on slit
sven is $R=7.5 \mathrm{~m}$ away
width of central mas is 3.2 cm
how wide is slit?
1黙 minima is $\frac{3.2 \mathrm{~cm}}{2}=1.6 \mathrm{~cm}$ above center of central may

$$
\begin{aligned}
\sin \theta \sim \tan \theta & =\frac{1.6 \mathrm{~cm}}{7.5 \mathrm{~m}}=0.00213=\frac{n \lambda}{a} \quad n=l \\
\text { so } a & =\frac{\lambda}{.00213}=\frac{.570 \times 10^{-6} \mathrm{~m}}{2.13 \times 10^{-3}}=0.27 \mathrm{~mm}
\end{aligned}
$$

Intensity pattern
Each wavelet has an E field $\Rightarrow E_{n} n=$ wavelet Af point P, each wavelet will have a phase shift from having di \iint rent path leug th

Add up all the waves as vectors
But assume R>>a

\Longrightarrow all waves are \sim parallel
so just need to add amplitudes to get final

$E_{\text {Tot }}$ at $P=$ sum E at each wavelet f \Rightarrow each E will have slightly dillerent phase at point P due to the dillerent path length

Textbook derivation is petty good
result: $I=P_{0} \frac{\sin ^{2}(x)}{\lambda^{2}}$ where $x=\frac{\pi a \sin \theta}{\lambda}$
where $\theta=$ angle between dashed hrigontal
line (from cent of slit to screen) and wavelet say from center of slit to P
Po is intensity at central maximerm: $\theta=0$ note: $\frac{\sin (x)}{x} \equiv$ "since function"
also $\frac{\sin (x)}{x}$ as $x \rightarrow 0=1$

Intensity minima are when $x=n \pi$
So $\frac{\pi a \sin \theta}{\lambda}=m \pi$
$\operatorname{asin} \theta=m \lambda$ as before

Intensity pattern derivation
To do this night we would pick a point P and add up the interference from all wavelet ts First calculate net electric field
\Rightarrow Each wave let has an E-field that has this form: $E_{i}=E_{0} \cos \left(k r-\omega t+\phi_{i}\right)$ where " i " labels the phase of the wavelet at point P.
$E_{T}=\sum_{i} E_{i}$ sum over wave le 3
A wavelet $\rightarrow \infty$, sum tarns into an integral:

$$
E_{r}=\frac{1}{a} \int_{-a l_{2}}^{a l_{2}} E_{i} d x
$$

the integral goes from $-\frac{a}{2}$ oo $\frac{a}{2}$ because we de (inv the phase dílfrence relative to the central wave lef
let x be the distance above the center of tho slit, and $-\frac{a}{2} \leqslant x \leqslant+\frac{a}{2}$
the phase difference between central wavelet
and any other wavelet at coordinate " x " is as usual: $\phi=k \Delta r$
where $\begin{array}{r}\Delta r= \\ \text { diflerence in distance from } \\ \text { the } 2 \text { wave lets to point } P\end{array}$ just as w/z-slit interference:

$$
\begin{aligned}
\Delta r & \Delta x \sin \theta \\
\phi_{i} & =k \Delta r_{i}=k x_{i} \sin \theta \\
& =2 \pi \frac{x_{i}}{\lambda} \sin \theta
\end{aligned}
$$

integral is:

$$
E_{\text {Tot }}=\frac{1}{a} \int_{-a / 2}^{a / 2} E_{0} \cos \left(k r-\omega t+\frac{2 \pi \sin \theta}{\lambda} x\right) d x
$$

- the $\frac{1}{a}$ is needed to cancel out the added position dimension from integration over x
- or you could think of the integral as being over the factional distance d($\frac{x}{a}$] this integral is cosy:

$$
\begin{aligned}
& E_{\text {GT }}=\left.\frac{1}{a} E_{0} \frac{\sin \left(k r-\omega t+\frac{2 \pi}{\lambda} \sin \theta x\right)}{\frac{2 \pi \sin \theta}{\lambda}}\right|_{-a / 2} ^{a / 2} \\
& =\frac{E_{0} \lambda}{2 \pi a \sin \theta}\left[\operatorname { s i n } \left(k r-\omega t+\frac{\pi a}{\lambda} \sin \theta\right.\right. \\
& \left.-\sin \left(2 r-\omega t-\frac{\pi a}{\lambda} \sin \theta\right)\right]
\end{aligned}
$$

let $A=k r-w t, B=\frac{\pi a}{\lambda} \sin \theta$
then $\sin (A+B)-\sin (A-B)$

$$
\begin{aligned}
&=\sin A \cos B+\cos A \sin B-(\sin A \cos B-\cos A \sin B) \\
&=2 \cos A \sin B \\
& \text { so } E_{\text {ToT }}=E_{0} \cos \left((2 r-\omega t) \sin \left(\frac{\pi a}{\lambda} \sin \theta\right)\right. \\
& \frac{\operatorname{\pi a\operatorname {sin}\theta }}{\lambda} \\
& \frac{\sin \left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a \sin \theta}{\lambda}}=\sin c(x) \Rightarrow \sin C(x)=\frac{\sin (x)}{x} \\
& \text { so } E_{\text {Tot }}=E_{0} \cos (k r-\omega t) \sin c\left(\frac{\pi a \sin \theta}{\lambda}\right)
\end{aligned}
$$

then intensity

$$
I=\varepsilon_{0} E_{\bar{T} \pi}^{2} C
$$

$$
\begin{aligned}
& =\underbrace{}_{\tilde{P}_{0} c E_{0}^{2} \cos ^{2}(k r-\omega t) \operatorname{sinc}^{2}}\left(\frac{\pi a \sin \theta}{\lambda}\right) \\
I & =I_{0} \sin c^{2}\left(\frac{\pi a \sin \theta}{\lambda}\right)
\end{aligned}
$$

LAt min is where $\frac{\pi a \sin \theta}{\lambda}=\pi(\sin (\pi)=0)$

$$
o r \operatorname{asin} \theta=\lambda
$$

$2^{\text {ns }}$ min is when $\frac{\pi a \sin \theta}{\lambda}=2 \pi$
or $a \sin \theta=2 \lambda$
etc: $a \sin \theta= \pm m \lambda \quad m=1,2,3 \ldots$ Minima
We don't look for maxima this way because the sine function is the product of 2 functions: $\sin c(x)=\frac{1}{x} \cdot \sin (x)$
max of $\sin (x)$ is not necessarily max of $\sin C$ \Rightarrow but min $\sin C=\min \sin$?
for very small angles $(R \gg)$ a) we have minima at

$$
\begin{aligned}
a \sin \theta \sim a \theta & =n \lambda \\
\theta & =\frac{n \lambda}{a_{n}}
\end{aligned}
$$

this is the angular width of the central max
Circular slits also forms difhaction patterns
 central war is called "Airy's disc"

for cirenlon apertures (slits) the above integral is more complicated
condition for $1^{\text {at }}$ minima:
$D \sin \theta=1.22 \lambda \quad(1.22$ comes from the

$$
\pi
$$ diameter

fo aperture complicated integral)

Back to geometric optics \& lens

we assume lens focuses to a point but now we know there's diffraction that smews the image out
ex: 2 objects at \propto (eg. 2 stars) are imaged through a telescope that has aperture D

- each object will form an image near focal pt, one below a I above
- each image will have a central max due to dilhac tion through telescope aperture
- Let θ be the angular sepana dion between the images \rightarrow this is also the angular separa for of the dejects
if $\sin \theta<1.22 \frac{\lambda}{D}$ then the mage f one will fall in the Airy
disc of the other
\Rightarrow images are not resolvable!

central max are for enough apart so you see the images clearly

central max's are close -max of l talks on min of the other - barely resolvable? here $\theta=\frac{1.22 k}{D}$
if $\theta<\frac{1.22 \lambda}{D}$ then the images are not resolvable
\Rightarrow this is the dillnaction limit for optical instruments
er: eye pupil can be as small as 2 mm if light has $\lambda=550 \mathrm{~nm}$, what is the minimum angle between 2 objects that you could see?

if head lights of, a car are $r=1.2 \mathrm{~m}$ apart, what's the farthest dist the car can be for you to still resolve the 2 head lights (and not look like a single head light)?

$$
\begin{aligned}
& \theta=\frac{r}{d}=3.36 \times 10^{-4} \\
& d=\frac{r}{3.36 \times 90^{-4}}=\frac{1.2 \mathrm{~m}}{3.36 \times 10^{-4}}=3577 \mathrm{~m} \\
& \sim 3.6 \mathrm{~km} \\
& \sim 2.2 \mathrm{miles}
\end{aligned}
$$

ax: eye pupil is $\sim 0 . t \mathrm{~cm}$ diameter dilated. if 2 stans are $10^{8} \mathrm{~km}$ apart (binary stars) then what's the furthest distance
they can be and still viewable by the eye without being "did(laction limited"? use $\lambda=900 \mathrm{~nm}$

$$
\theta=\frac{1.22 \lambda}{D}=\frac{1.22 * 400 \times 10^{-9} \mathrm{~m}}{0.4 \times 10^{-2} \mathrm{~m}}=1.22 \times 10^{-4}
$$

$$
\begin{aligned}
\theta=\frac{r}{d} & =1.22 \times 10^{-4} \\
d & =\frac{10^{8} \mathrm{~km}}{1.22 \times 10^{-4}}=8.2 \times 10^{11} \mathrm{~km}=8.2 \times 10^{18} \mathrm{~m}
\end{aligned}
$$

note: speed of light $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
so the time to travel any dist $d=c t$ so the time for light to $g 08.2 \times 10^{14} \mathrm{~m}$:

$$
\begin{aligned}
t=\frac{d}{c}=\frac{8.2 \times 10^{14} \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}} & =2732 \text { light }-\mathrm{sec} \\
& =45.5 \text { light }-\mathrm{min}
\end{aligned}
$$

The closest stan is Proximo Centaur

$$
d=4.246 \text { light -years }
$$

so the eye is incapable of resolving binary stans that are $10^{8} \mathrm{~km}$ apart
\Rightarrow whats the smallest separation at 4.246 lightly?

$$
\begin{aligned}
& \frac{1.22 \lambda}{D}=\frac{r}{4.246 \text { lout-gh }} \\
& \text { l lightyear }=\text { dist light goes in } 1 y /=c t \\
& =3 \times 10^{8} \frac{\mathrm{~m}}{5} * \operatorname{lyp} * \frac{365 d}{y} * \frac{24 \mathrm{hr}}{d} * \frac{3600 \mathrm{sec}}{\mathrm{hr}} \\
& =9.46 \times 10^{15} \mathrm{~m} \\
& r=1.22 * \frac{400 \times 10^{-9}}{0.4 \times 10^{-2}}+4.246+9.96 \times 10^{15} \\
& =4.9 \times 10^{12} \mathrm{~m} \\
& \begin{aligned}
\frac{4.9 \times 10^{12} \mathrm{~m}}{3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}=16335 \text { light-sec } & \cong 272 \text { light-min } \\
& \approx 4.5 \text { light - hours }
\end{aligned}
\end{aligned}
$$

This is past orbit if pluto?

$$
\begin{aligned}
& \text { dist earth-sun }=93 \times 10^{6} \text { miles* } \frac{528 s \mathrm{ft}}{m i} * \frac{1 \mathrm{~m}}{3.28 \mathrm{ft}} \\
&=1.5 \times 10^{11} \mathrm{~m} \\
& \frac{1.5 \times 10^{4 \prime} \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=500 \mathrm{l} . \mathrm{ght}-\mathrm{sec} \sim 8 \text { light-min } \\
& \text { de (ine l Astionomical unit }(1 \text { Au })=\text { earth-sun } \\
& \text { dist }
\end{aligned}
$$

Interference + Diffraction
previous 2 -slit interference ignored slit width

resulting interference pattern had max ina when $d \sin \theta=n \lambda$

$$
n=0, \pm 1, \pm 2, \ldots
$$

If we use light, $\lambda \sim 550 \mathrm{~nm}$, slits are usually with $a>\lambda$ so have to include dJ |nation in interference pattern
 screen $R \gg a_{1} d_{j} \lambda$

$d \xi\left[\right.$ reaction: $\quad a \sin \theta=m \lambda \quad$ Minima $m= \pm 1, \pm 2 \eta_{1}$.
For $\sin \theta \sim$ small, $\tan \theta \sim \sin \theta \sim \theta$
and $\tan \theta=\frac{y}{R}$
so position y for interference min:

$$
\begin{aligned}
& \frac{d y_{n}}{R}=\left(n+\frac{d}{2}\right) \lambda \\
& a \quad y_{n}=\frac{R \lambda}{d}\left(n+\frac{1}{2}\right)
\end{aligned}
$$

position for di: (action minima:

$$
\begin{aligned}
& \frac{a y_{m}}{R}=m \lambda \\
& \text { or } y_{m}=\frac{R \lambda m}{a}
\end{aligned}
$$

distance between infulerence minima:

$$
\Delta y_{i}=y_{n+1}-y_{n}=\frac{R \lambda}{2 d}
$$

drat between diffraction minima:

$$
\Delta y_{d}=y_{m+1}-y_{m}=\frac{R \lambda}{a}
$$

usually $a<d ; \Delta y_{i}<\Delta y_{d}$
so there will be many interference minima inside diffraction minima

Intensity pattern for 2 slit:
$I=I_{0} \cos ^{2} \$ / 2$ where $\phi=$ phase dit between waves from top \& Bot

$$
\begin{aligned}
\phi & =b A r-k * d \sin \theta \\
& =\frac{2 \pi d \sin \theta}{\lambda}
\end{aligned}
$$

Intensity fa diffraction of single slit:

$$
I=I_{0} \sin c^{2}\left(\frac{\pi a \sin \theta}{\lambda}\right)
$$

overall intensity: di [action modulates interference

$$
I=I_{0} \cos ^{2}(\underbrace{\left.\frac{\pi d \sin \theta}{\lambda}\right)}_{\substack{\text { inferlereace } \\ \text { maxima }}} \sin ^{2}(\underbrace{\left.\frac{\pi a \sin \theta}{\lambda}\right)}_{\substack{\text { di flection } \\ \text { minima }}}
$$

when $\frac{d}{a}=$ integer then the diff min will cancel out int max
ex: $a=1 \mathrm{~mm}, d=3 \mathrm{~mm}$

interference max is a pts $y_{u}=n \frac{\lambda R}{d}$
difluactionmin is $y_{m}=\frac{m \lambda R}{a}$ since $d=3 a$ can write $y_{n}=\frac{n k R}{3 a}$
So int max coincides w)dil[min when $m=413$
this means $3^{\text {rd }}$ interference araxima is washed out by 1 st diffraction minima
\Rightarrow in general, *interference maxima between diffraction minima will be

$$
N=\underset{\substack{\frac{d}{a}}}{\frac{d}{a}}+\underbrace{\frac{d}{a}}_{\text {side }}-1 \quad=\frac{2 d}{a}-1=\frac{2 d-a}{a}
$$

"washed ont"

multiple slits
start w/2 slits

P interference is constanetive at P if $k \Delta r=2 \pi \cdot a$

$$
n=0, \pm 1, \pm 2 \text {, ate }
$$

for $n=l$, then $k \Delta r=2 \pi \quad k=\frac{2 \pi}{\lambda}$ and $D r=d \sin \theta$

P_{\uparrow}
$y_{1} \quad \tan \theta=\frac{y_{1}}{R}$
and $\tan \theta \sim \sin \theta$
so $\sin \theta=\frac{\lambda}{d}=\frac{y_{1}}{R}$

$$
y_{1}=\frac{\lambda R}{d}
$$

$y_{1}=$ height above line of symmetry betwee wave $1 \& 2$
now add another slit w/same spacing

this wave will also add constunctively at P because the path dill to the other 2 waves will also be a multiple of λ

this is in the limit $R \ggg d$
so that all lays make an $\binom{R=$ dist to }{ sven } angle θ to the horizontal dashed line

Next add more slit. Each slit will add wistructively at point P with other soruces (at the other slits)
This will produce a very bright max at point P

Now move point P slightly up from the max and and more slits:

Dashed lines are point P^{\prime}, at $y^{\prime}>y_{1}$ It 2 waves have path dill Δr_{12} that is slightly bigger than be ore (red" line)
$2^{\text {ns }}$ pair has a path diff（fence ΔF_{23} that is even bises than Δr_{1}

$$
\Delta r_{23}>\Delta r_{1}
$$

each addifisual slit will have an even bigger path diflerence
for large enough number b slits，at some point the extra path di｜lenence will start to be $1 / 2 \lambda$ glom the 1告 and will cane each other out

So Night next to 告 max we will fall quest in to zero amplitude due to all the cancellations
\Rightarrow For M w／dist d between you will still see max when $d \sin \theta_{n}=n \lambda$ but as $m \rightarrow \infty$ the amplitude falls off mode quickly

2 slits

3 slits

10 slits

100 slits

Actually there is some structure between these maxima but it is much reduced \Rightarrow there are N-1 minima insefwee maxima
for N slits

but the slits all have to have the same separation!

Diffraction gating
This is used for very many slits (1000s) The interference maxima are very peaked!

N slits per length $D \therefore$ spacing $d=\frac{D}{N}$
interference max cere when $d \sin \theta=n \lambda$ and $\tan \theta \cong \sin \theta=\frac{y_{u}}{R}$

$$
\text { so } \begin{aligned}
\frac{d y_{n}}{\pi} & =n \lambda \\
\text { so } y_{n} & =n \frac{\lambda R}{d}
\end{aligned}
$$

then distance between maxima on the screen $\Delta y=y_{n+1}-y_{n}=\frac{\lambda R}{d}$
so if we measure $\Delta y, d, B$ carefully then $\lambda=\frac{d \cdot \Delta y}{R}$ tells yer the wave leuthof light
\Rightarrow Di $[$ reaction gratings can be used to measure wave lengths of light

